
STABLE PARALLEL ELIMINATION FOR BOUNDARY VALUE ODES�STEPHEN J. WRIGHTyPREPRINT MCS{P229{0491, MCS DIVISION, ARGONNE NATIONAL LABORATORYAbstract. A parallelizable and vectorizable algorithm for solving linear algebraic systems arising from two-point boundaryvalue ODEs is described. The method is equivalent to Gaussian elimination, with row partial pivoting, applied to a certainrow- and column- reordered version of the usual almost-block-diagonal coe�cient matrix. Analytical and numerical evidence ispresented to show that the algorithm is stable. Results from implementation on a shared-memory multiprocessor and a vectorprocessor are given. The approach can be extended to handle problems with multipoint and integral conditions, or algebraicparameters.Key words. Parallel algorithms, two-point boundary value problems, Gaussian elimination, stabilityAMS(MOS) subject classi�cations. 65L10, 65L20, 65W051. Introduction. In a recent paper [11], we described a technique for solving the almost block-diagonalsystem of linear equations that arise in various algorithms for solving two-point boundary value problems,such as collocation, multiple shooting, and �nite di�erencing. The advantage of the approach is that it canbe adapted to make e�cient use of parallel and vector computer architectures, while retaining the stabilitycharacteristics that are essential in robust software. The technique makes use of orthogonal transformationsthat take advantage of the special structure of the matrices.In this report, we discuss a similar technique based on Gauss transformations. The new \structuredelimination" technique and the structured orthogonal technique make identical use of the matrix structure,but the former requires substantially fewer 
oating-point operations. Timing results are given for somecomputational experiments on two advanced computer architectures. In Section 4, we investigate the stabilityof this structured elimination algorithm by relating it to a block factorization algorithm, which e�ectivelydecouples the increasing and decreasing fundamental modes when an exponential dichotomy is present andthe problem is well conditioned. We show in Section 5 how the approach can be extended to handle problemswith algebraic parameters or multipoint and integral side conditions.Some of the details of the problem and the structured factorization approach have been discussed in [11]and hence are omitted here.2. The Algorithm. Consider the linear �rst-order two-point boundary value problemy0 = M (t)y + q(t); t 2 [a; b]; y 2 Rl n;(1) Bay(a) +Bby(b) = d; d 2 Rl n:(2)Multiple shooting and �nite di�erencing proceed by choosing a grida = t1 < t2 < : : : < tk+1 = band seeking vectors si that approximate the true solution y(ti) for i = 1; : : : ; k+ 1. In both methods, linearsystems of the following form must be solved for s1; s2; : : : ; sk+1:2666664 Ba BbA1 C1A2 C2. . . . . .Ak Ck 37777752666664 s1s2s3...sk+1 3777775 = 2666664 df1f2...fk 3777775 :(3)� This research was supported by the Applied Mathematical Sciences subprogram of the O�ce of Energy Research, U. S.Department of Energy, under Contract W-31-109-Eng-38. A grant of computer time at the North Carolina SupercomputingCenter is gratefully acknowledged.y Argonne National Laboratory, 9700 South Cass Avenue, Argonne, Illinois 60439.1



PARALLEL ELIMINATION FOR BOUNDARY VALUE ODEs 2Here, Ai; Ci 2 Rn�n, fi 2 Rn. Collocation techniques give rise to similar systems, after condensation hasbeen used to remove some of the parameters. In the case of separated end conditions, we can assume thatBa, Bb, and d have the form Ba = � �Ba0 � ; Bb = � 0�Bb � ; d = � dadb � ;where �Ba 2 Rl�n and �Bb 2 R(n�l)�n. In this case, the system is usually reordered as266666664 �BaA1 C1A2 C2. . . . . .Ak Ck�Bb 377777775266666664 s1s2s3...sksk+1 377777775 = 266666664 daf1f2...fkdb 377777775 :(4) Our algorithm starts, as in [11], by choosing an integer P � k=2, and a set of \separator" indices0 = k0 < k1 < : : : < kP = k; kj+1 � kj + 2; j = 0; : : : ; P:Using these indices, we divide the coe�cient matrix into P \slices," where slice j consists of rows (kj�1 +1)n+ 1; : : : ; (kj + 1)n, with the (structural) zero columns deleted. For example, the �rst slice is26664 A1 C1 f1A2 C2 f2. . . . . . ...Ak1 Ck1 fk1 37775 :(5)We now perform Gaussian elimination, with row partial pivoting, on the submatrix obtained by omittingthe �rst and last block column for each slice. In (5), the �rst n steps of this process yield the factorization� U10 � = ~L1;nP1;n : : : ~L1;2P1;2~L1;1P1;1 � C1A2 � ;(6)where P1;i 2 R2n�2n, i = 1; : : : ; n, are permutation matrices; ~L1;i 2 R2n�2n, i = 1; : : : ; n, are Gausstransformations; and U1 2 Rn�n is upper triangular. (The information needed to construct each ~L1;i can bestored in the locations formerly occupied by the eliminated elements of [CT1 AT2 ]T , while the permutationdata for the whole process requires an integer array with dimension equal to that of the right-hand side of(3).) Applying the transformations across the �rst 2n rows of the matrix (5), we obtain an equivalent systemwhose augmented matrix is 2666664 G1 U1 E1 g1�G2 0 �C2 �f2A3 C3 f3. . . . . . ...Ak1 Ck1 fk1 3777775 ;where � G1 U1 E1 g1�G2 0 �C2 �f2 � = ~L1;nP1;n : : : ~L1;2P1;2~L1;1P1;1 � A1 C1 0 f10 A2 C2 f2 � :



PARALLEL ELIMINATION FOR BOUNDARY VALUE ODEs 3Repeating the process, for rows n+ 1; : : : ; 3n, we �nd permutation matrices P2;i and Gauss transformations~L2;i, i = 1; : : : ; n, such that� G2 R2 E2 g2�G3 0 �C3 �f3 � = ~L2;nP2;n : : : ~L2;2P2;2~L2;1P2;1 � �G2 �C2 0 �f20 A3 C3 f3 � :Proceeding in this way for stages 3; : : : ; k1 � 1, we �nally obtain the equivalent system2666664 G1 U1 E1 g1G2 U2 E2 g2... . . . . . . ...Gk1�1 Uk1�1 Ek1�1 gk1�1~A1 ~C1 ~f1 3777775 :(7) A reduced system, involving only (P + 1)n variables and equations, can be formed by taking the lastblock row of each partition after the factorization above has been applied. As in [11], this system has theform 2666664 Ba Bb~A1 ~C1~A2 ~C2. . . . . .~AP ~CP 37777752666664 s1sk1+1sk2+1...skP+1 3777775 = 2666664 d~f1~f2...~fP 3777775 :(8)Since the form of (8) is identical to that of the original system, the elimination procedure just described canbe applied recursively. Eventually, a 2n� 2n system of the form� Ba Bb~A ~C � � s1sk+1 � = � d~f �(9)is obtained. This can be solved by standard Gaussian elimination with partial pivoting. The \intermediate"unknowns can be recovered by back substitution, using the matrices Ui and Ei and the right-hand sides giwhich were obtained earlier in the factorization process.Di�erent variants of the overall algorithm can be distinguished by the number of levels used to obtain(9) from (3). A serial (one-level) algorithm would set P = 1 and hence go directly from (3) to (9). On ashared-memory machine, it may be appropriate to use a two-level algorithm, in which P is set equal to thenumber of available processors. The �rst stage of the reduction (which \compresses" (3) into (8)) can becarried out in parallel, while the compression of (8) to (9) can be performed on a single processor. On avector processor, a \cyclic reduction" version, which uses log2 k levels, is most appropriate. At the �rst level,we set P = k=2, so that each partition consists of just two block rows. A reduced system of approximatelyhalf the size of the original system is produced. The code can be written so that the innermost (vectorized)loops have length k=2. This procedure is applied recursively; at each level the size of the remaining systemis halved. For more details, see [11].For future reference, note that the elimination step (6) can be recast as follows: suppose that l of thepivot rows (0 � l � n) are drawn from the �rst n rows of the original matrix (i.e., the C1 rows), so that n� lof the pivots come from the A2 rows. Then we can write� U10 � = � L11 0L21 I �� �R1 00 0 � � Pa PbPb Pa �� �O0 00 �O1 � � C1A2 � ;(10)where �R1, �O0 and �O1 are n�n permutation matrices, L11 is n�n and unit lower triangular, L21 is n�n, andPa = � 0 00 Il � ; Pb = � In�l 00 0 � :(11)



PARALLEL ELIMINATION FOR BOUNDARY VALUE ODEs 4Table 1Operation counts and storage requirements for four algorithms, assuming separated end conditions (k = number of meshpoints, n = dimension of y, p = number of left-hand end conditions, R = number of right-hand sides)Algorithm Operation Count StorageLU (row pivoting) k[53n3 + 3pn2 +R(4n2 + 2pn)] 3kn2DECOMP/SOLVE k[23n3 + (4R+ 5p)n2 � 2np2] 2kn2Structured QR k[463 n3 + (15R+ 30)n2] 4kn2Structured LU k[233 n3 + (8R� 52 )n2] 4kn2Table 2Operation counts and storage requirements for four algorithms, assuming nonseparated end conditions (k = number ofmesh points, n = dimension of y, R = number of right-hand sides)Algorithm Operation Count StorageLU (row pivoting) k[233 n3 + 8Rn2] 4kn2DECOMP/SOLVE k[143 n3 + 4Rn2] 3kn2Structured QR k[463 n3 + (15R+ 30)n2] 4kn2Structured LU k[233 n3 + (8R� 52 )n2] 4kn2Note that � L11 0L21 I � = ~L1;n~L1;n�1 : : : ~L1;1:The notation here is similar to that of Mattheij [9]. This is no accident, since the style of stabilityanalysis in Section 4 is similar to that used in [9].3. Computational Results. Variants of the structured elimination algorithm have been implementedon the Alliant FX/8 vector multiprocessor at Argonne National Laboratory and on the CRAY Y-MP at theNorth Carolina Supercomputing Center. In this section, we compare these codes with implementations ofother algorithms for solution of the linear system arising from �nite di�erence and shooting methods. Theseare � a plain row partial pivoting code. The ordering (4) is used if the end conditions are separated.Otherwise, left-hand and coupled conditions are listed �rst, and right-hand conditions are listed atthe end. We denote these codes by ROWPP.� the DECOMP and SOLVE routines from the PASVA codes [7]. The DECOMP routine uses alternate rowand column pivoting (as does the algorithm described in Varah [10]) but always eliminates by rows.� the structured orthogonal factorization algorithm from [11]. These codes are generically denoted bySQR.The structured elimination codes are referred to by the name SLU. The structured codes are subcategorizedaccording to the number of levels. For example, the one-level, two-level, and cyclic reduction variants of theSQR code are named SQR-1, SQR-2, and SQR-CR, respectively.Table 1 compares storage and operation counts for the four algorithms, assuming separated end condi-tions. In tabulating storage requirements, we assume that the multipliers and Householder vectors generatedduring the factorization are stored, for possible later use with di�erent right-hand sides. For the two struc-tured algorithms, the operation counts are independent of the number of recursive levels in the factorizationprocess. Structured elimination requires about a third as many operations as structured orthogonal factor-ization, and they both have higher counts than the \serial" algorithms. However, operation counts are poorpredictors of runtime, particularly on advanced computer architectures with their vectorization and pipelin-ing capabilities. The structured algorithms are not as slow as Table 1 would suggest, even in serial mode.Table 2 contains the same information for the case in which the end conditions are completely coupled. Thestructured algorithms are indi�erent to whether the end conditions are separated or nonseparated, whereasthe operation counts for the serial algorithms increase markedly in the nonseparated case.



PARALLEL ELIMINATION FOR BOUNDARY VALUE ODEs 5Table 3Box method, 1-norm error in the computed solution for Problem 1Ak = 32 k = 128 k = 1024ROWPP, DECOMP, SQR-1, SLU-1 .28(-1) .17(-2) .26(-4)Table 4Multiple shooting, 1-norm error in the computed solution for Problem 1Ak = 8 k = 16 k = 64ROWPP, DECOMP, SQR-1, SLU-1 .17(-3) .14(-4) .35(-6)The stability properties of the algorithms are tested by using them to solve two small problems basedon the same ODE, but with di�erent end conditions.Problem 1A a = 0, b = �, n = 3,y0(t) = 24 1� 19 cos 2t 0 1 + 19 sin2t0 19 0�1 + 19 sin 2t 0 1 + 19 cos 2t 35 y(t) + et 24 �1 + 19(cos 2t � sin 2t)�181� 19(cos 2t + sin 2t) 35 ;y1(0) = 1y2(�) = e�y1(�) + 3y3(�) = 4e�:The solution is y(t) = et(1; 1; 1)T . A fundamental solution for this problem isY (t) = 24 sin t 0 � cos t0 1 0cos t 0 sin t 35 diag(e20t; e19t; e�18t):Problem 1B (Mattheij [9]) Same as Problem 1A, but with end conditionsy1(0) = 1y3(0) + y3(�) = 1 + e�y2(0) + y2(�) = 1 + e� :Again, the solution is y(t) = et(1; 1; 1)T .The code dverk is used as the IVP solver in the multiple shooting code, with the global error toleranceset to 10�10. The k subintervals are equally spaced in both codes. A midpoint-rule discretization is used inthe �nite-di�erence code (yielding the \box method"). Results from single-precision implementation on theCRAY Y-MP are reported.Tables 3 and 4 show maximum errors in the computed solutions for Problem 1A. The behavior of thefour codes is identical. Since the end conditions are separated, the two \serial" codes use the ordering (4); thematrix is now banded, and any reasonable partial pivoting strategy can be expected to be stable. The errorsare consistent with estimates that take into account discretization error (in the case of the �nite di�erencemethod) and conditioning of the problem.Tables 5 and 6 show errors in the computed solutions for Problem 1B, which has coupled end conditions.In this respect, the behavior of the codes ROWPP, SQR-1, and SLU-1 was indistinguishable. The code DECOMPdoes not properly decouple the modes, and so gives large errors.



PARALLEL ELIMINATION FOR BOUNDARY VALUE ODEs 6Table 5Box method, 1-norm error in the computed solution for Problem 1Bk = 32 k = 128 k = 1024ROWPP, SQR-1, SLU-1 .28(-1) .17(-2) .26(-4)DECOMP .24(+2) .24(+2) .24(+2)Table 6Multiple shooting, 1-norm error in the computed solution for Problem 1Bk = 8 k = 16 k = 64ROWPP, SQR-1, SLU-1 .17(-3) .14(-4) .35(-6)DECOMP .24(+2) .24(+2) .24(+2)As expected, the compacti�cation algorithm produces very large errors when applied to both 1A and1B. Four test problems are used to compare the relative execution speeds of the codes on the Alliant FX/8and the CRAY Y-MP:Problem 2 (Ascher and Chan [1]) a = 0, b = 1, n = 2,y0(t) = � �� cos 2!t ! + � sin 2!t�! + � sin 2!t � cos 2!t � y(t) + f(t); y1(0) = 1; y1(1) = e;with f(t) chosen so that y(t) = et(1; 1)T .Problem 3 (Brown and Lorenz [3]) a = �1, b = 1, n = 4,��y00 � t2y0 + t2z0 + z = ��2 cos �t + 12�t sin�t;�z00 = zy(�1) = �1 y(1) = e�2=p�z(�1) = 1 z(1) = e�2=p�:(We use � = :001.)Problem 4A a = 0, b = 1, n = 5,M (t) = 266664 ��1 cos 2!1t 0 !1 + �1 sin 2!1t 0 00 ��2 cos 2!2t 0 !2 + �2 sin 2!2t 0�!1 + �1 sin 2!1t 0 �1 cos 2!1t 0 00 �!2 + �2 sin 2!2t 0 �2 cos 2!2t 00 0 0 0 �3 377775 ;q(t) = [q1(t); q2(t); q3(t); q4(t);�(�3 � 1)et]T ;with boundary conditions y1(0) = 1;y2(0) + 4y5(0) = 5; y1(1) = e;�y3(1) + y4(1) = 0;�4y2(1) + 5y5(1) = e:



PARALLEL ELIMINATION FOR BOUNDARY VALUE ODEs 7Table 7Alliant FX/8, one-processor timings for linear system solvers, k = 1024 (times in seconds)Problem ROWPP DECOMP SQR-1 SQR-CR SLU-1 SLU-CR2 .424 .667 .816 1.06 .576 .6493 1.31 1.94 3.21 4.50 2.08 2.534A 1.94 2.71 5.42 7.79 3.48 4.404B 3.44 3.28 5.42 7.78 3.47 4.37We use �1 = 200, �2 = 50, �3 = 10, !1 = 1, and !2 = 25. The components of q(t) are chosen so that thesolution is et(1; 1; 1; 1; 1)T . This problem has a fundamental solutionY (t) = 266664 cos!1t 0 sin!1t 0 00 cos!2t 0 sin!2t 0� sin!1t 0 cos!1t 0 00 � sin!2t 0 cos !2t 00 0 0 0 1 377775 diag (e��1t; e��2t; e�1t; e�2t; e�3t)and is obtained by replicating Problem 2.Problem 4B Same ODE and solution as Problem 4A, except that three of the boundary conditions arecoupled: y1(0) = 1y2(0) + 4y5(0) + y3(1) = 5 + e�5y1(0) + y1(1) = �5 + e3y2(0) � y3(1) + y4(1) = 3�4y2(1) + 5y5(1) = e:Tables 7 and 8 show execution times on one processor of the Alliant FX/8. The -Og option was usedduring compilation, so the vectorization capabilities of the processor were not used. Comparing these tableswith the operation counts in Tables 1 and 2, we see that the time required by the DECOMP code is greater thanexpected, while the time required by SQR-1 is less than expected. This result is at least partially due to thelarge amount of data manipulation performed by DECOMP (in the interests of economizing on storage) and thelack of such data manipulation in the SQR code, which avoids the need for pivoting altogether. The \cyclicreduction" codes take somewhat longer than their sequential counterparts, partly because their data accesspatterns are not localized. On problem 4B (the only one with some coupled end conditions), the time neededby ROWPP and DECOMP increases markedly over the time for Problem 4A. In fact, SLU becomes competitivehere even without the bene�t of vectorization or parallelization. In addition, we note that DECOMP alwaysgives inaccurate answers for the coupled end-condition Problem 4B, because of its failure to decouple theincreasing and decreasing fundamental modes.Tables 9 and 10 give execution times for the codes when they have been compiled to run on eightprocessors of the Alliant without vectorization. The structured codes speed up as predicted, although thebottleneck of solving the reduced system on a single processor is particularly noticeable when k = 128.De�ning speedup as the ratio of time for fastest serial algorithm to time for best parallel algorithm, we seefrom Table 11 that the SLU-2 code demonstrates excellent e�ciency for the larger problems, especially whenthe boundary conditions are not separated.Results for vectorized implementations on the CRAY Y-MP are shown in Tables 12 and 13. The \cyclicreduction" versions of the structured codes vectorize very e�ciently, as can be seen by comparing theirexecution times with the corresponding sequential versions. Speedups over the best serial codes fall o�



PARALLEL ELIMINATION FOR BOUNDARY VALUE ODEs 8Table 8Alliant FX/8, one-processor timings for linear system solvers, k = 128 (times in seconds)Problem ROWPP DECOMP SQR-1 SQR-CR SLU-1 SLU-CR2 .065 .118 .119 .157 .085 .0983 .172 .291 .416 .573 .273 .3224A .247 .399 .692 .989 .449 .5434B .445 .468 .697 .990 .446 .538Table 9Alliant FX/8, eight-processor timings for linear system solvers, k = 1024 (times in seconds)Problem ROWPP DECOMP SQR-2 SLU-22 .359 .695 .136 .1043 .749 1.65 .466 .3114A .963 2.14 .765 .5064B 1.37 2.79 .766 .505Table 10Alliant FX/8, eight-processor timings for linear system solvers, k = 128 (times in seconds)Problem ROWPP DECOMP SQR-2 SLU-22 .051 .114 .037 .0353 .096 .242 .091 .0694A .124 .301 .143 .1004B .181 .387 .142 .100Table 11Alliant FX/8. Speedups, de�ned as time for fastest one-processor algorithm divided by time for fastest eight-processoralgorithm Problem k = 1024 k = 1282 4.08 1.863 4.21 2.494A 3.83 2.474B 6.50 4.45



PARALLEL ELIMINATION FOR BOUNDARY VALUE ODEs 9Table 12CRAY Y-MP, vectorized code on one processor, k = 1024 (times in milliseconds)Problem ROWPP DECOMP SQR-1 SQR-CR SLU-1 SLU-CR2 34.3 48.8 117. 10.8 83.0 7.33 84.7 134. 300. 51.6 194. 40.04A 111. 171. 415. 89.4 263. 71.44B 233. 245. 413. 89.5 261. 71.8Table 13CRAY Y-MP, vectorized code on one processor, k = 128 (times in milliseconds)Problem ROWPP DECOMP SQR-1 SQR-CR SLU-1 SLU-CR2 4.3 6.1 14.6 2.2 10.3 1.63 10.6 16.8 37.4 10.1 24.2 7.34A 13.8 21.4 51.8 17.3 32.8 12.54B 29.2 30.7 51.5 17.3 32.6 12.5somewhat when the end conditions are separated and n = 4 or n = 5, since in these cases the codes ROWPPand DECOMP achieve a small amount of vectorization in the factorization of each of the blocks in the coe�cientmatrix in (4).4. Stability of Structured Elimination. The stability of the SQR algorithms has been examined in[11] by using standard tools for the analysis of orthogonal factorizations from the numerical linear algebraliterature (see, for example, Golub and Van Loan [5]). Similar tools can be used to analyze the SLU algorithms,since each variant of SLU is simply Gaussian elimination with row partial pivoting, applied to a row- andcolumn-reordered version of the coe�cient matrix in (3). However, it is well known that, even with rowpivoting, element growth can occur in the upper triangular factor which is exponential in the size of thematrix (in our case (k + 1)n). Although such growth is unlikely in practice, it is nevertheless desirable touse the structure of the matrix in (3) and the properties of the underlying problem (1), (2) to obtain amore realistic bound on the error growth in the method. We do this by using a style of analysis that wasdeveloped by Mattheij in a series of papers (see, for example [8], [9]). Our approach is �rst to describe ablock factorization algorithm, which is similar to \stable compacti�cation" (Section 4.2). This algorithmperforms the required decoupling of the growing and decaying modes. Then, in Section 4.3, we show that the\serial" variant of SLU is essentially equivalent to this block algorithm under certain reasonable assumptions.4.1. Dichotomy and Conditioning. We start by brie
y reviewing the salient points of the theory ofdichotomy and conditioning, from Ascher, Mattheij, and Russell [2] and Mattheij [9].The ODE (1) is said to have an exponential dichotomy if there exist real positive constants K, �, and �and an integer l with 0 � l � n, such that, for some fundamental solution Y (t) of (1),kY (x)PaY �1(t)k � Ke��(x�t); x � t;kY (x)PbY �1(t)k � Ke��(t�x); t � x;(12)where Pa and Pb are as in (11). Any other fundamental solution Z(t) of (1) is related to Y (t) byZ(t) = Y (t)H = Y (t) � H11 H12H21 H22 � ;where H 2 Rn�n is constant and nonsingular, H11 2 R(n�l)�(n�l), etc.Similarly, we can consider the linear recurrence given by the discrete system (3), namely,Aisi + Cisi+1 = fi; i = 1; : : : ; k:(13)



PARALLEL ELIMINATION FOR BOUNDARY VALUE ODEs 10This recurrence is said to have an exponential dichotomy if there exist positive constants K, � > 1, � > 1,and an integer l as above, such that for some fundamental solution fYig (with AiYi+CiYi+1 = 0, i = 1; : : : ; k)we have kYiPaY �1j+1k � K�j�i; i � j + 1;kYiPbY �1j k � K�i�j ; i � j:(14)As in the continuous case, any other fundamental solution fZig of (13) can be related to fYig byZi = YiH = Yi � H11 H12H21 H22 � ; i = 1; : : : ; k:(15)fZig is said to be consistent with fYig if H11 in (15) is nonsingular. Since the exact dichotomic solutionfYig is not obtainable in practice, any consistent solution fZig can in theory be used to decouple theincreasing and decreasing fundamental modes. It is su�cient to de�ne consistency constant L byL def= kY 21 H21kminkuk=1 kY 11 H11uk(where Y 11 and Y 21 are the �rst (n � l) and last l columns of Y1, respectively) and assume that L is of\moderate size."It is known [2, p. 289] that if (3) is obtained by applying �nite di�erencing to (1) with uniform meshspacing h � ti+1�ti, and if the ODE (1) has the dichotomy (12), then the recurrence (13) has the dichotomy(14) with � = e�h and � = e�h.From here until the end of the paper, we work solely with (3) and (13) and assume that the dichotomy(14) applies. We further assume that Ci = �I, i = 1; : : : ; k. This assumption is true for multiple shootingand the condensed form of the collocation equations; it can be obtained for �nite di�erencing by multiplying(13) through by �C�1i . We can therefore rewrite (13) assi+1 = Aisi � fi:(16)Suppose that we choose some orthogonal matrix Q0 2 Rn�n and generate a sequence fQig, i = 0; : : : ; kof orthogonal matrices by using the formula AiQi�1 = Qi�i:(17)We require that �i have the form �i = � �11i �12i0 �22i � :(18)This could be obtained, for example, by de�ning Qi, �i as QR factors of AiQi�1. If fZig is a fundamentalsolution of (16), we can use (17) to writeZi+1 = AiZi ) (QTi Zi+1) = �i(QTi�1Zi);so that Wi = QTi�1Zi, W1 = I, de�nes a fundamental solution of the homogeneous recurrencewi+1 = �iwi; i = 1; : : : ; k:It follows from (18) that each Wi has the formWi = � W 11i W 12i0 W 22i � ; i = 1; : : : ; k + 1:(19)



PARALLEL ELIMINATION FOR BOUNDARY VALUE ODEs 11Note, in particular, that W 11i (W 11j+1)�1 = jYr=i(�11r )�1; i � j;W 22i (W 22j+1)�1 = �22i�1�22i�2 : : :�22j+1; i � j + 1:As a special case of [2, Theorem 6.30], we have the following:Theorem 4.1. Suppose the dichotomy (14) holds, with fundamental solution fYig, and that the funda-mental solution fZig with initial condition Z1 = Q0 is consistent with fYig, with L of moderate size. Thenthere are moderately sized constants K1 > 1 and K2 > 1 such thatk jYr=i(�11r )�1k2 � K1�i�j ; i � j;k�22i�1�22i�2 : : :�22j+1k2 � K2�j�i; i � j + 1:4.2. A Structured Block Factorization. Given the assumption Ci � �I, we can negate all but theboundary condition rows of (3) and perform an obvious row and column reordering to obtain the matrixA = 266666666664 I 0 �A1�A2 I 0 0�A3 I ... .... . . . . . I 0 0�Ak I 0Bb Ba 377777777775 :(20)In this section, we describe a block factorization algorithm for A and show that it gives a stable way ofsolving the system (3).Using the orthogonal matrices Q0; Q1; : : : ; Qk of the previous section, de�ne~R = diag(QT1 ; QT2 ; : : : ; QTk ; I)~D = diag(Q1; Q2; : : : ; Qk; Q0):From (17) and (18) it follows that ~RA ~D has the form~RA ~D = 2666666666666666666666664
I 0 ��111 ��1210 I 0 ��221��112 ��122 I 00 ��222 0 I��113 ��123 I 00 ��223 0 I. . . . . . . . . . . .I 00 I��11k ��12k I 0 0 00 ��22k 0 I 0 0(BbQk) (BaQ0)

3777777777777777777777775 :



PARALLEL ELIMINATION FOR BOUNDARY VALUE ODEs 12Using the n�n permutation matrices Pa and Pb from (11) as building blocks, we de�ne (k+1)n-dimensionalpermutation matrices Pi, i = 1; : : : ; (k � 1), byPi = 26666666666664 I . . . I Pa Pb (block row i)Pb Pa (block row i+ 1)I . . . I 37777777777775 :Let P = Pk�1Pk�2 : : :P1:Applying these permutations to the rows of ~RA ~D, we obtainP ~RA ~D =2666666666666666666666664
��112 ��122 I 0 0 00 I 0 0 0 ��2210 ��113 ��123 I��222 0 I 00 ��114 ��124 I��223 0 I 0. . . . . . . . . . . .��11k ��12k I 00 I 0 0I 0 0 0 0 0 ��111 ��1210 0 0 ��22k 0 I 0 0(BbQk) (BaQ0)

3777777777777777777777775 :Now, without further pivoting, we can perform block elimination in an obvious way, stopping when the �nal2n� 2n submatrix is reached. We thus obtainP ~RA ~D = ~L0 ~U 0;where ~L0 = 26666666664 I~L1 I~L2 I. . . . . .~Lk�2 I~H1 ~Hk�2 Ĥk�1 I I 37777777775 ;



PARALLEL ELIMINATION FOR BOUNDARY VALUE ODEs 13~U 0 = 266666664 ~U1 ~E1 ~G1~U2 ~E2 ~G2. . . . . . ...~Uk�1 ~Ek�1 ~Gk�1R̂1 R̂2BbQk BaQ0 377777775 ;~Li = � 0 00 ��22i+1 � ; ~Ui = � ��11i+1 ��12i+10 I � ; ~Ei = � I 00 0 � ;~Hi = � ��111 S�1i+1 ��111 S�1i+1�12i+10 0 � ; ~Gi = � 0 00 �Ti � i = 1; : : : ; k� 1;Ĥk�1 = ~Hk�1 + ~Lk�1;R̂1 = � ��111 S�1k 00 I � ; R̂2 = � ��111 ��111 X0 �Tk � ;Si = �11i �11i�1 : : :�111 ; Ti = �22i �22i�1 : : :�221 ;X = S�11 �121 � k�1Xj=1 S�1j+1�12j+1Tj:Finally, we can �nd a 2n� 2n permutation matrix ~�, unit lower triangular ~~L and upper triangular ~~U suchthat ~~L~~U = ~� � R̂1 R̂2BbQk BaQ0 � :Incorporating this into the overall factorization, we obtain� I 00 ~� �P ~RA ~D = ~L ~U;(21)where ~L = 266666666664 I~L1 I~L2 I. . . . . .~Lk�2 I~H11 ~H12 : : : ~H1k�2 Ĥ1k�1~H21 ~H22 : : : ~H2k�2 Ĥ2k�1 ~~L 377777777775



PARALLEL ELIMINATION FOR BOUNDARY VALUE ODEs 14~U = 2666666664 ~U1 ~E1 ~G1~U2 ~E2 ~G2. . . . . . ...~Uk�1 ~Ek�1 ~Gk�1~~U 3777777775 ;and � ~H1i~H2i � = ~� � ~Hi0 � ; i = 1; : : : ; k � 1; � Ĥ1k�1Ĥ2k�1 � = ~� � Ĥk�10 � :The entire process is almost identical to stabilized compacti�cation (as described in [2, pp. 157{161]),the only di�erence being in the handling of the �nal 2n � 2n block. Stability of the factorization (21)follows immediately from this relationship. Alternatively, from the standard viewpoint of numerical linearalgebra, stability follows from the fact that element growth in the ~L and ~U factors is bounded by reasonablequantities. To see this, de�ne � def= max(1; kA1k2; : : : ; kAkk2; kBak2; kBbk2);and note that � � kAik2 = k�ik2 � k�12i k2;� � k�11i k2; � � k�22i k2; i = 1; : : : ; k:We have from Theorem 4.1 that kS�1i k2 � (�K1)��i;kTik2 � (K2=�)��i:Hence k�2Xi=1 k ~Hik2 + kĤk�1k2 � k�1Xi=1 �k�111 S�1i+1k2 + k�111 S�1i+1�12i+1k2� + k�22k k2� (� + �2) k�1Xi=1 kS�1i+1k2 + �� (� + �2)K1 �� � 1 + �:In addition, kXk2 � (K1�)(K2=�)� ���1 + ��2��1 + : : :+ ��k��k+1� � �K1K2��� � 1 ;k~Lik2 � �;k ~Uik2 � 3�;k ~Eik2 = 1;k ~Gik2 � (K2=�)��i:Note that if � = e�h and � = e�h, where h is a �nite di�erence mesh width, and if �h� 1 and �h� 1, thenterms such as 1=(� � 1) and 1=(�� � 1) are O(h�1).For future reference, we state the result as a theorem:Theorem 4.2. Provided that the assumptions of Theorem 4.1 are satis�ed, the factorization (21) isstable.



PARALLEL ELIMINATION FOR BOUNDARY VALUE ODEs 154.3. Relating the Block Factorization to SLU. We now examine the \serial" version of structuredelimination and show how it is related to a block factorization for a particular choice of Q0. This relationshipcan be used to prove the stability of SLU.Recall that (10) and (11) depict the �rst of k + 1 stages of the factorization process. Note that inthis stage, a total of n � l rows were exchanged between the �rst and second block rows. Throughout theremainder of the paper, we make the following assumption:Assumption 1. The ODE (1) has an exponential dichotomy, with l decreasing fundamental modes(1 � l � n). At each stage i of the structured elimination algorithm (for i = 1; : : : ; k), exactly n� l rows areexchanged, by row pivoting, between the i-th block row and the (i+1)-st block row. Moreover, the collection ofn� l rows that is swapped out of the �rst block row is passed down, intact, through block rows i = 2; 3; : : : ; k.This assumption was always observed to hold for the examples reported in Section 3. It means that if,for example, row 1 of block 1 is swapped into block 2 during the �rst stage, then this same row is eventuallypivoted to the bottom of the matrix, that is, to somewhere in the k-th or (k + 1)-st block rows. We stressthat this does not mean that \reimbedding," as described in Dieci, Osborne, and Russell [4] and Kellerand Lentini [6], does not occur. On the contrary, in all the test examples, we observe reimbedding in theform of occasional changes in the internal pivot sequence from one stage to the next. The last statement ofAssumption 1 refers to the collection of rows that are exchanged between successive stages, rather than thepivot sequence within a stage.Using Assumption 1, we can view stage i of the factorization process (for i = 1; 2; : : : ; k � 1) as apremultiplication of the remaining submatrix byLiRiPiOi;where, for i = 1; 2; : : : ; k� 1, Pi is as de�ned in Section 4.2, andLi = 266666666666664 I . . . I L1i (block row i)L2i I (block row i+ 1).. . . . . I 377777777777775 ;Ri = 266666666664 I . . . I �Ri (block row i)I . . . I 377777777775 ;



PARALLEL ELIMINATION FOR BOUNDARY VALUE ODEs 16Oi = 266666666664 I . . . I �Oi (block row i + 1)I . . . I 377777777775 :Here, L1i is unit lower triangular, and �Ri and �Oi are permutation matrices. Before the very �rst stage, thematrix A is multiplied by some initial permutation O0 = diag ( �O0; I; I; : : : ; I). For the �nal stage, in whichthe remaining 2n � 2n block is factored, we de�ne a 2n � 2n permutation matrix �Rk, and premultiply byLkRk, where Lk = 26664 I . . . I L1k 37775 ;Rk = 26664 I . . . I �Rk 37775 ;and L1k is 2n � 2n unit lower triangular. At the end of the process, a block upper triangular matrix U isobtained, with (LkRk)(Lk�1Rk�1Pk�1Ok�1) : : : (L1R1P1O1)O0A = U;(22)where A is as in (20).We now rework (22) so that it is more directly comparable with the block factorization (21). To startwith, simple manipulation involving the permutation blocks in Ri and Oi yields(LkRk)(Lk�1Rk�1Pk�1Ok�1) : : : (L1R1P1O1)O0= R(�Lk��Lk�1Pk�1��Lk�2Pk�2 : : :P2��L1P1)O;(23)where R = diag ( �R1; �R2; : : : ; �Rk�1; �Rk)O = diag ( �O0; �O1; �O2; : : : ; �Ok�1; I);and, for i = 1; : : : ; k � 1, ��Li has the form��Li = 26666666666664 I . . . I �L1i�L2i I I . . . I 37777777777775 ;



PARALLEL ELIMINATION FOR BOUNDARY VALUE ODEs 17where �L1i = �RTi L1i �Ri�L2i = L2i �Ri:For the �nal elimination matrix, we have used the notation�Lk = RTkLkRk = diag (I; I; : : : ; I; �L1k); where �L1k = �RTkL1k �Rk:We can then use the following result, which is similar to property 8.56 of Mattheij [9], to isolate the \rowexchange" matrices P1; : : : ; Pk. Its proof is simple and hence is not included here.Lemma 4.3. For i = 1; : : : ; k � 2,Pk�1Pk�2 : : :Pi+1��Li = �LiPk�1Pk�2 : : :Pi+1;where �Li = 266666666666666664 I . . . I �L1iPa�L2i I I . . .IPb �L2i 0 0 : : : I 0I
377777777777777775 :Lemma 4.3 can be used, together with (22) and (23) and the de�nition of P , to yieldRL�1POA = U;(24)where, de�ning �Lk = ��Lk�1 for consistency, we haveL�1 = �Lk �Lk�1�Lk�2 : : : �L1:Apart from some permutations internal to the blocks, the back-substitution part of the solution process canbe viewed as premultiplication by L�1P . Suppose the vector z 2 R(k+1)n is partitioned asz = (z1b ; z1a; z2b ; z2a; : : : ; zkb ; zka ; zk+1b ; zk+1a )T ;where zib 2 Rn�l and zia 2 Rl. ThenPz = (z2b ; z1a; z3b ; z2a; : : : ; zkb ; zk�1a ; z1b ; zka ; zk+1b ; zk+1a )T :For i = 2; : : : ; k�1, the subvector (zi+1b ; zia) is a�ected only by premultiplication by �Li�1 and �Li. Meanwhile,the next-to-last subvector (z1b ; zka) is a�ected by every �Li. We use the following notation:� (zi+1b ; zia) is transformed to (�zi+1b ; �zia) when premultiplication by �Li�1 is performed;� (iz1b ;i zka ) denotes the transformed version of (z1b ; zka), after �L1; : : : ; �Li have been applied.For later reference, we also set~zi = �L1i � �zi+1b�zia � ; i = 1; : : : ; k� 1; � ~zk~zk+1 � = �L1k 2664 k�1z1bk�1zkazk+1bzk+1a 3775 ;(25)



PARALLEL ELIMINATION FOR BOUNDARY VALUE ODEs 18so that ~z = (~z1; : : : ; ~zk+1)T is the �nal outcome of the application of L�1P . Note that since the �L1i (i =1; : : : ; k) are row and column permutations of unit lower triangular matrices, they are certainly nonsingular.Using the notation of Lemma 4.3, we have, upon premultiplication by �Li�1, that� �zi+1b�zia � = Pa �L2i�1 � �zib�zi�1a �+ � zi+1bzia �(26) = � 0 0(�L2i�1)21 (�L2i�1)22 � � �zib�zi�1a �+ � zi+1bzia � :(Here, as earlier, we have used (H)11 to denote the leading (n � l) � (n � l) submatrix of a generic n � nmatrixH, with the remaining blocks H12, H21, and H22 de�ned accordingly.) Examining the last block row,we see that � (i�1)z1b(i�1)zk+1a � = Pb�L2i�1 � �zib�zi�1a �+ � (i�2)z1b(i�2)zka �(27) = � (�L2i�1)11 (�L2i�1)120 0 � � �zib�zi�1a �+ � (i�2)z1b(i�2)zka � :By combining and assembling the nontrivial parts of (26) and (27), we �nd that� (i�1)z1b�zia � = � I (�L2i�1)120 (�L2i�1)22 � � (i�2)z1b�zi�1a �+ � (�L2i�1)11 0(�L2i�1)21 I � � �zibzia � :(28)We now show that (28) is a stable recurrence by relating it to the block factorization described in Section4.2. The block factorization can be initialized in the following way: De�ne Q1 = �OT0 , and then choose Q0 insuch a way that QT1A1Q0 is upper triangular. The remaining matrices Q2; : : : ; Qk can then be obtained asin (17) and (18), leading to the factorization (21). We need the following assumption:Assumption 2. The matrix Q0 obtained by the procedure just described induces a consistent fundamentalsolution fZig (with Z1 = Q0) of the recurrence (16), with a consistency constant of moderate size.Intuitively, it seems almost certain that this assumption will be satis�ed. The �rst n � l rows of thereordered matrix QT1A1 = �O0A1 tend to correspond to the \larger" rows that are exchanged with the secondstage. Postmultiplication by Q0 yields �111 and �221 , which can be expected to satisfy the inequalities ofTheorem 4.1, with K1 and K2 not much larger than 1.Comparing (21) with (24), we �nd thatRL�1 �PO ~RTPT � I 00 ~�T �� ~L = U ~D ~U�1:(29)Clearly, by inspection of the structures of ~D, U and ~U , we see that both sides of this equation are blockupper triangular matrices. We examine the structure of the left-hand side more closely. Using the notationVi = �Oi�1Qi; i = 1; 3; : : :; k; (V1 = �O0Q1 = I); Vk+1 = I;we have O ~RT = diag (V1; V2; : : : ; Vk; Vk+1). HencePO ~RTPT =(30)



PARALLEL ELIMINATION FOR BOUNDARY VALUE ODEs 192666666666666666666664
(V2)11 0 0 (V2)120 (V1)22 0 00 0 (V3)11 0 0 (V3)12(V2)21 0 0 (V2)22 0 00 0(V3)21 0 . . . . . .. . . . . . . . . (Vk)11 0 0 (Vk)120 (Vk�1)22 0 00 0 (V1)11 0(Vk)21 0 0 (Vk)22 I

3777777777777777777775 ;where the lower right identity block is n � n. Further, from the de�nition of ~L in Section 4.2, it is easy tosee that � I 00 ~�T � ~L = 26666666664 I~L1 I~L2 I. . . . . . I~H10 ~H20 : : :: : : ~Hk�20 Ĥk�10 ~�T ~~L 37777777775 :(31)When the matrices (30) and (31) are multiplied together, we obtain the following block lower Hessenbergmatrix, which we denote by J0: J0 = (PO ~RTP T ) � I 00 ~�T � ~L =26666666664 J011 J012J021 J022 J023. . . . . . . . . J0k�2;k�1J0k�1;k�2 J0k�1;k�1 J0k�1;kJ0k;1 J0k;2 : : : : : : J0k;k�1 J0k;k J0k;k+10 0 : : : : : : 0 J0k+1;k J0k+1;k+1 37777777775 :Each J0r;s (1 � r; s � k + 1) denotes an n � n block, and they are de�ned as follows:J0i;i = � (Vi+1)11 �(Vi+1)12�22i+10 (Vi)22 � ; i = 1; : : : ; k� 1;J0i;i+1 = � 0 (Vi+1)120 0 � ; i = 1; : : : ; k � 2;J0i+1;i = � 0 0(Vi+1)21 �(Vi+1)22�22i+1 � ; i = 1; : : : ; k� 2;J0k;i = � �(V1)11�111 S�1i+1 �(V1)11�111 S�1i+1�12i+10 0 � ; i = 1; : : : ; k � 2;



PARALLEL ELIMINATION FOR BOUNDARY VALUE ODEs 20J0k;k�1 = � �(V1)11�111 S�1k �(V1)11�111 S�1k �12k(Vk)21 �(Vk)22�22k � ;J0k�1;k = � 0 (Vk)120 0 � ~�T ~~L;� J0k;k J0k;k+1J0k+1;k J0k+1;k+1 � = 24 (V1)11 (Vk)22 I 35 ~�T ~~L:We now de�ne a sequence of matrices J i, i = 0; 1; : : : ; k byJ i = �Li : : : �L1 J0:(32)The following lemma summarizes some observations about each J i:Lemma 4.4.(i) Jji�2;i = 0, j = 0; 1; : : : ; k + 1, i = 3; 4; : : : ; k + 1;(ii) J ii+1;i = 0, i = 1; 2; : : : ; k;(iii) Jjj+2;i = J0j+2;i, j = 0; 1; : : : ; k� 3, i = 0; 1; : : : ; k+ 1.(iv) Jkj;i = Jjj;i for j = 1; 2; : : : ; k� 1 and i = 0; 1; : : :; k + 1.Proof. (i) follows from the fact that each of the \block elementary" matrices �Li is lower triangular, andso each J i is block lower Hessenberg. For (ii), note from (29) that Jk is block upper triangular, and soJki+1;i = 0. Premultiplication by �Li a�ects only block rows i, i+ 1 and k of J i�1, and no structural �ll-in iscreated in block row i. It follows that Jki+1;i = Jk�1i+1;i = : : : = J ii+1;i = 0. Note for (iii) that transformations�L1; : : : ; �Lj a�ect only block rows 1; 2; : : : ; j + 1 and k of the target matrix J0. In particular, block row j + 2is unaltered. Assertion (iv) follows from the fact that rows 1; : : : ; j are una�ected by the transformations�Lj+1; : : : ; �Lk.From Lemma 4.4 (ii), (iii), we have for i = 1; : : : ; k� 2 that0 = J ii+1;i = Pa �L2i J i�1i;i + J i�1i+1;i= � 0 0(�L2i )21 (�L2i )22 � J i�1i;i + � 0 0(Vi+1)21 �(Vi+1)22�22i+1 � :(33)For i = 2; : : : ; k� 2,J i�1i;i = Pa �L2i�1J i�2i�1;i + J i�2i;i= � 0 0(�L2i�1)21 (�L2i�1)22 � J i�2i�1;i + � (Vi+1)11 �(Vi+1)12�22i+10 (Vi)22 � :(34)For i = 3; : : : ; k� 2, J i�2i�1;i = Pa �Li�2J i�3i�2;i + J i�3i�1;i:By Lemma 4.4 (i), J i�3i�2;i = 0, and so J i�2i�1;i = J i�3i�1;i = � 0 (Vi)120 0 � :(35)By combining (35) and (34), we obtainJ i�1i;i = � (Vi+1)11 �(Vi+1)12�22i+10 (�L2i�1)21(Vi)12 + (Vi)22 � :



PARALLEL ELIMINATION FOR BOUNDARY VALUE ODEs 21Substituting this expression in (33), and looking at the (2; 1) and (2; 2) blocks of the product, we �nd thatfor i = 3; : : : ; k� 1,0 = (�L2i )21(Vi+1)11 + (Vi+1)21(36) 0 = � �(Vi+1)22 + (�L2i )21(Vi+1)12��22i+1 + (�L2i )22 �(Vi)22 + (�L2i�1)21(Vi)12� :(37)Consideration of the special cases i = 1 and i = 2 shows that (with the convention �L0 = I) the formulae(36) and (37) hold in these cases as well. From (36),� (�L2i )21 I � � (Vi+1)11 (Vi+1)12(Vi+1)21 (Vi+1)22 � = � 0 (�L2i )21(Vi+1)12 + (Vi+1)22 � :Since [ (�L2i )21 I ] has full rank and Vi+1 is orthogonal, (�L2i )21(Vi+1)12+(Vi+1)22 is nonsingular. Hence wecan de�ne the transformation yi+1a = [(�L2i )21(Vi+1)12 + (Vi+1)22]�1�zi+1a ;(38)for i = 1; : : : ; k � 2, with y1a = �z1a. Substituting in (28) from (38), we have the following recurrence fori = 2; : : : ; k: yia = �22i yi�1a + [(�L2i�1)21(Vi)12 + (Vi)22]�1[(�L2i�1)21zib + zia]:(39)Theorem 4.1 implies that this recurrence is stable. Examination of the other term in (28) leads to(i�1)z1b = (�L2i�1)12�zi�1a +(i�2) z1b + (�L2i�1)11zi+1b= i�1Xj=1(�L2j )12�zja + z1b + i�1Xj=1(�L2j )11zj+2b :Since the components of �L2j are bounded in magnitude by 1, and since the recurrence underlying �zja is stable,there is no possibility of kiz1bk being exponentially larger than kzk.Having shown that forward substitution involving the factor L is stable, we turn to the back substitution,which involves U .From (29) and (32), we have thatJ def= Jk = U ~D ~U�1 , J ~U = U ~D:(40)Since J is both block lower Hessenberg and block upper triangular, it must be block upper bidiagonal. Wewish to verify that the solution x of the system Ux = ~z(41)does not have kxk=k~zk exponential in k. By an orthogonal change of variables ~DTx = �x, (41) becomesU ~D�x = ~z , J ~U �x = ~z:(42)We can, therefore, prove the desired result by showing that back substitution with both J and ~U is stable.For the case of ~U , this is best seen by partitioning the (k+1)n�vectors �x and y in the usual way, namely,�x = (�x1b ; �x1a; �x2b; �x2a; : : : ; �xk+1b ; �xk+1a )y = (y1b ; y1a; y2b ; y2a; : : : ; yk+1b ; yk+1a ):To solve ~U �x = y, we �rst back substitute to �nd the solution of~~U 2664 �xkb�xka�xk+1b�xk+1a 3775



PARALLEL ELIMINATION FOR BOUNDARY VALUE ODEs 22and then perform the following recurrence for i = k � 1; k� 2; : : : ; 1:~Ui � �xib�xia � + ~Ei � �xi+1b�xi+1a � + ~Gi � �xk+1b�xk+1a � = � yibyia � ; i = k � 1; k� 2; : : : ; 1:(43)Componentwise, (43) is ��11i+1�xib ��12i+1�xia + �xi+1b = yib�xia � Ti�xk+1a = yia:From Theorem 4.1, Ti decays exponentially with i, so the �xia, i = 1; 2; : : :; k � 1, remain bounded. Thehomogeneous part of the �rst recurrence is �xib = (�11i+1)�1�xi+1b :Again, we appeal to Theorem 4.1 to deduce that this is stable.For the back substitution with J , we again refer to the left-hand side of (29) to �nd expressions for Ji;iand Ji;i+1. First, from Lemma 4.4 and the fact that each J i is lower Hessenberg, we have for i = 1; : : : ; k�1,that Ji;i+1 = J ii;i+1 = �L1i J i�1i;i+1 = �L1i [Pa�L2i�1J i�2i�1;i+1 + J i�2i;i+1] = �L1i � 0 (Vi+1)120 0 � :Second, Ji;i = J ii;i = �L1i J i�1i;i = �L1i [Pa�L2i�1J i�2i�1;i + J i�2i;i ];and since J i�2i�1;i = Pa�L2i�2J i�3i�2;i + J i�3i�1;i = � 0 (Vi)120 0 � ;we obtain by substitution thatJi;i = �L1i �� 0 00 (�L2i�1)21(Vi)12 �+ � (Vi+1)11 �(Vi+1)12�22i+10 (Vi)22 �� :(This formula also holds in the special cases i = 1 and i = 2, with a simpli�ed derivation.) Given the systemJy = ~z, partitioning in the usual way, and using (25), we obtain for i = 1; : : : ; k � 1, thatJi;iyi + Ji;i+1yi+1 = (�L1i )�1~zi) � (Vi+1)11 �(Vi+1)12�22i+10 (�L2i�1)21(Vi)12 + (Vi)22 � � yibyia �+ � 0 (Vi+1)120 0 � � yi+1byi+1a � = � �zib�zia � :It follows immediately that yia = [(�L2i�1)21(Vi)12 + (Vi)22]�1�zia;exactly as in (38), and from (39) we know that the sequence of yia, i = 1; : : : ; k � 1 is governed by a stablerecurrence. For the remaining components,yib = (Vi+1)�111 [�zib + (Vi+1)12�22i+1yia � (Vi+1)12yi+1a ]:(Vi+1)11 is clearly nonsingular, since it is a diagonal block in the nonsingular upper triangular matrix J .Recall that for i = 2; 3; : : :; k, Vi = �Oi�1Qi, where �Oi�1 is a permutation matrix and Qi is generated as in(17) and (18). It is reasonable to expect that the behavior of the sequence fQig is governed by the behavior of



PARALLEL ELIMINATION FOR BOUNDARY VALUE ODEs 23some solution to the underlying continuous Lyapunov equation (see, for example, [2, 9]). Therefore, it tendsto depend on i=k rather than k. Since, by observation, the permutation matrices O2i�1 are also independentof the discretization (they tend to change at indices that correspond to �xed points in the interval [a; b]), wecan safely make the following assumption:Assumption 3. k(Vi+1)�111 k2 � K3, i = 1; : : : ; k, where K3 is independent of k.The end results of the discussion above can be stated as a theorem:Theorem 4.5. If Assumptions 1, 2 and 3 hold, then the linear system (3) arising from (1){(2) can besolved in a stable way by using the \serial" version of Algorithm SLU.Stability of the multipartition versions of SLU can be proved in a similar way. As an aside, we notethat the \standard" error analysis for Gaussian elimination factorizations (which would take account of thestructure of the coe�cient matrix in (3), but not the dichotomy properties of the underlying ODE) actuallygives tighter bounds as the number of partitions increases, because the upper bound on element growthduring the factorization decreases. For the serial version, element growth of O(2(k+1)n) could in principleoccur in the last block column during elimination with row partial pivoting. For the \cyclic reduction"version, this bound is only (2n log k) (i.e., O(kn)).5. Extension to Problems with Multipoint Conditions or Algebraic Parameters. Finally, wedescribe the extensions of SLU to problems with parameters, or multipoint/integral side conditions. We havealready observed that all variants of SLU are simply Gaussian elimination with row partial pivoting, appliedto a reordered coe�cient matrix; for example, \serial" SLU is obtained by applying row partial pivoting to(20). In this section, we show serial SLU orderings analogous to (20) for these more general problems.One form of the algebraic-parameter problem [2, p. 322] isy0 = M (t; �)y + q(t; �); t 2 [a; b]; y 2 Rl n; � 2 Rl rBay(a; �) + Bby(b; �) = d(�); d 2 Rl (n+r)�n:If this problem is linearized with respect to �, and a �nite-di�erence or multiple shooting method is applied,the following extended form of (3) is obtained:2666664 Ba Bb Z0A1 C1 Z1A2 C2 Z2. . . . . . ...Ak Ck Zk 3777775266666664 s1s2s3...sk+1�� 377777775 = 2666664 d(�)f1f2...fk 3777775 :(44)Rearranging rows and columns, we obtainA = 26666666664 C1 A1 Z1A2 C2 0 Z2A3 C3 0 Z3. . . . . . ... ...Ck�1 0 Zk�1Ak Ck 0 ZkBb Ba Z0 37777777775 :We can now proceed with SLU exactly as described in Section 2. The major di�erence is that the Gi blockswill now have n+ r columns, rather than n.The multipoint side condition problem (see [2, pp. 6,323]) isy0 = M (t)y + q(t); t 2 [a; b]; y 2 Rl n;



PARALLEL ELIMINATION FOR BOUNDARY VALUE ODEs 24PJj=1Bjy(�j) = d; d 2 Rl n;a = �1 < �2 < : : : < �J = b:When the points �1; : : : ; �J are included in the �nite di�erence or multiple shooting mesh, the generalizationof (3), with some trivial row reordering, is26666666666664 A1 C1A2 C2. . . . . . Aj Cj. . . . . .Ak CkB1 0 : : : 0 Bj 0 : : : BJ 377777777777752666664 s1s2s3...sk+1 3777775 = 2666664 f1f2...fkd 3777775 :(45)Taking the transpose of the coe�cient matrix, we obtainAT = 26666666666664 AT1 BT1CT1 AT2 0CT2 . . . .... . . ATj BTjCTj . . . 0. . . ATk ...CTk BTJ 37777777777775 :(46)Clearly, (46) di�ers from (20) only in that the last block column contains some extra nonzeros. Since SLU�lls out this last column in any case, this is of little concern. Hence, (45) can be solved by applying SLU toAT rather than A. SLU computes a factorization of the formPATQ = LU;where P and Q are permutation matrices. SinceAs = f , UTLT (Ps) = QT f;the solution of (45) is obtained by performing a forward substitution with UT and a back substitution withLT . If the multipoint condition in (45) is replaced by an integral condition of the formZ ba B(� )y(� ) d� = d;(47)then appropriate discretization of (47) will produce a problem of the form (45), with J = k+1. The resultingtechnique provides an alternative to the popular approach of introducing arti�cial dependent variables toobtain a new problem with boundary conditions only.REFERENCES[1] U. M. Ascher and P. S. Y. Chan, On parallel methods for boundary value odes, Computing, 46 (1991), pp. 1{17.
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